Author:
Kaplan Alexander F. H.,Robertson Stephanie M.,Volpp Joerg,Frostevarg Jan
Abstract
Abstract
Laser beam welding of tailored blank butt joints of different sheet thickness generates asymmetric melt pool conditions. By employing two, three or four tailored laser beams, additional options for shaping the melt pool conditions can be offered. As observed by high speed imaging, in most multi-spot cases a large stable buttonhole was generated, by the trailing laser beams asymmetrically towards the thinner sheet. Correspondingly, the ablation pressure from the multiple boiling fronts has generated a fast melt jet, particularly along the thicker sheet. In many cases the boiling front kept open to the keyhole rear. The buttonhole differs from the Catenoid-like shape reported earlier. The walls are steeper and the horizontal shape can be asymmetric. The melt pool can switch between different stable modes. Inclined arrangement of three beams enabled even two separate, parallel boiling fronts and melt jets, combining behind the opening. Despite the large buttonhole, sound welds were achieved. Solely for four equal laser beams, arranged as a square, a melt pool without buttonhole was generated. Provided the driving forces from the ablation pressure along with the melt flow are sufficiently explored and understood, new opportunities to optimize the welding process are available.