Performance investigation and control parameters choice for sliding mode control of coupled tanks system

Author:

Louis M A,Roman M R,Mahmoud O E,Sedrak M F

Abstract

Abstract In several food processing and chemical industries, liquid is pumped and kept in interrelating coupled tanks. However, automatic regulation of the liquid level and flow control between these tanks is a challenging problem because of the complexity and high non linearity of such system. This paper deals with the liquid level control of two horizontal coupled tanks system. A comprehensive comparative study is made for most popular sliding mode control (SMC) algorithms found in literature, namely Proportional-Derivative Sliding Mode Control (PD-SMC), Proportional-Integral-Derivative SMC (PID-SMC), Fractional Order SMC and finally dynamic SMC. Special emphasis is put on the effect of the sensor noise on the controller performance. Simulated experiments including robustness to variation in plant parameters and step input disturbances are made. Control algorithms parameters are selected to optimize designed performance indices by using MATLAB optimization toolbox. Simulation results reveal that dynamic SMC is superior to other control algorithms in the presence of sensor noise and has a significant reduction in the actuator chattering phenomenon.

Publisher

IOP Publishing

Subject

General Medicine

Reference46 articles.

1. Development of a web-based laboratory for control experiments on a coupled tank apparatus;Ko;IEEE Trans. Educ.,2001

2. PID control system analysis, design, and technology;Ang;IEEE Trans. Control Syst. Technol.,2005

3. PID tuning for improved performance;Wang;IEEE Trans. Control Syst. Technol.,1999

4. Tuning of decentralised PI (PID) controllers for TITO processes;Tavakoli;Control Eng. Pract.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3