An experimental study on mechanical and ballistic characteristics of different HTPB composite propellant formulations

Author:

NourEldin A F,Adel WM,Attai YA,Ismail M A

Abstract

Abstract The main goal of this paper is to investigate the changing in the tensile behavior and the burning rate characteristics of hydroxyl-terminated polybutadiene (HTPB) propellantunder the variations of the crosslinking density, which was predominantly determined by the equivalent ratio of diisocyanate to total hydroxyl (NCO/OH ratio), which known as the curing ratio. Four variousbatches with different curing ratios (NCO/OH) percentage were produced in which the production processes were fixed. Uniaxial tensile tests were conducted at different temperatures (-40, 20 and 55°C), and different strain rates (0.000656 1/s, 0.0328 1/s) using a Zwick universal test machine. In order to measure the burning rate, cured solid propellant strands were tested using the acoustic wave emission method under different pressure ranging from 4 to 10 MPa. The experimental results indicate that the tensile behavior of HTPB propellant is remarkably influenced by curing ratio, strain rate, and temperature. It was observed that a great change on stress-strain curves affected various curing ratios and temperatures on the mechanical behavior of propellant composition. The results showed that high curing ratio leads to increase theultimatestress and decrease the strainat maximum stress, but higher temperatures lead to decrease theultimate stress and the strain at maximum stress.The curing ratios (NCO/OH) have an intense impact on mechanical characteristics, but slightly impact on ballistic characteristics for propellant. Furthermore, careful measurements of these parameters are important to control the production quality and to provide a reliable comparison between different propellant batches.

Publisher

IOP Publishing

Subject

General Medicine

Reference24 articles.

1. Evaluation of Mechanical Properties of Solid Propellants in Rocket Motors by Indentation Technique;Rao;Propellants, Explos. Pyrotech,2016

2. Introduction to Solid Rocket Propulsion;Kuentzmann;de Recherches Aérospatiale,2002

3. Solid propellants AP / HTPB composite propellants;Shalini;Arab. J. Chem,2015

4. Analysis of Mechanical Properties for AP / HTPB Solid Propellant under Different Loading Conditions;Adel;in International Journal of Aerospace and Mechanical Engineering,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3