Investigation of tool damage in shear cutting of ultra-high strength sheet steels

Author:

Beier Thorsten,Iizuka Eiji,Shimmiya Toyohisa,Miyake Hiroto

Abstract

Abstract Proportions of high- and ultra-high strength steels are constantly increasing in modern car bodies. In the press shop there are uncertainties concerning the application of steels with strength higher than 1000MPa particularly concerning shear cutting processes. To support the steel user regarding a tool material and coating and the wear behavior, long-term shear cutting test had been carried out. The effects of various shear cutting conditions on tool damage were investigated by continuous shear cutting test with an amount of cutting cuts up to 100,000 times. Tested sheet materials were 780, 1’180 and 1’470MPa grade steels. The changed cutting conditions were sheet steel strength, tool material, cutting clearance, and rake angle. Measurements by laser and confocal microscopes were carried out in order to reveal tool damage mechanisms. The features of tool damage were classified as wear, chipping, and plastic deformation. The amount of plastic deformation rises with the increase of sheet steel strength. Not only plastic deformation but also chipping in the tested tool was observed in the cutting test of 1180MPa sheet steel by standard tool steel (DIN 1.2379) after 40’000 cuts. Large plastic deformation in the tested tool was observed in a cutting test of 1470MPa sheet steel by high-speed steel (DIN 1.3343) after 100’000 cuts although no chipping was detected. Under a rake angle of 5°, serious chipping and tool wear were observed especially near the final sheet-tool contact position. Regarding clearance, the amount of plastic tool deformation increased with the decrease of the clearance. This effect of the clearance can be explained by vertical force and by sheet rotation during cutting.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3