Assessment of the effect of shapes of a shaft intake structure using the PIV method

Author:

Bytčanková L

Abstract

Abstract The construction of shaft intake structures in Slovakia has increased. The shaft intake structures overcome significant vertical height over short horizontal distance. In their front horizontal section, the water flows with free surface, then in the vertical section the flow changes its direction and character to a pressurized flow. The flow of water in these shaft intake structures is therefore very complicated. A hydraulically suitable design of the intake structure is associated with achieving the required parameters of the small hydropower plant (SHPP), but due to the reduction of project costs, the shapes of shaft intake structures of SHPP are often not correctly hydraulically designed. One of the important aspects is the distribution of flow velocity of these intake structures. Uneven distribution of flow velocity causes negative effects on turbine performance. Therefore, the investigation of the effects of shaft intake structure design on flow velocity distribution has been realized. The velocity field at a shaft intake of a small hydropower plant was investigated on a physical model in a hydraulic laboratory using the PIV (Particle Image Velocimetry) method. The PIV measurements were realized for different shaft heights and proved negative effects of the design on the flow homogeneity in the turbine intake.

Publisher

IOP Publishing

Subject

General Medicine

Reference8 articles.

1. Design and optimization of a turbine intake structure;Fošumpaur;Acta Polytechnica,2005

2. Effect of intake geometry on the occurrence of a free-surface vortex;Taştan;Journal of Hydraulic Engineering,2018

3. Theoretical and experimental study on the vortex at hydraulic intakes;Sun;Journal of Hydraulic Research,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3