Author:
Kumar Badhagouni Suresh,Raju S. Viswanadha,Reddy H.Venkateswara
Abstract
Abstract
Behavior human analysis is always a significant aspect in societal communication. The human behavior analysis is developed based on few factors like human activity and action recognition. Human action recognition is an significant feature in different safety fields. The assessment of the action recognition algorithm depends on the appropriate extraction and the learning data. In the human action recognition, classification plays the major role so in order to this effectively Gated Recurrent Neural Network is used with an increased computation level. Feature extraction is one of the essential factor in human action recognition it will influence the performance and computation time of the algorithm. This paper presented an approach for human action recognition based on new mixture deep learning model. The proposed method is evaluated on the different data sets like UCF Sports, KTH and UCF101. On UCF Sports data set the proposed method has given an average of 96.8%.
Reference26 articles.
1. Attention-based models for speech recognition;Chorowski,2015
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献