LTV-FIR command prefiltering for vibration reduction of a flexure-jointed X-Y motion stage with payload variation

Author:

Kuresangsai P.,Cole M. O. T.

Abstract

Abstract This paper investigates the application of a linear-time-varying (LTV) command prefilter for vibration reduction in motion control of LTV systems. A model-based time-varying prefilter function is constructed that can be convolved with arbitrary command input signals to achieve residual vibration cancellation in a finite time. The prefilter is implemented on an experimental X-Y micro-positioning stage with a low-compliance flexure-jointed mechanism. Model coefficients within the LTV prefilter realization are varied in real-time according to measured platform position. As the dynamic model is also dependent on platform payload, a method is introduced to compensate for changes of payload mass based on the interpolation of model coefficients for extremum values. The results reveal that residual vibration can be cancelled effectively with settling time reduced from over 2 seconds to less than 0.4 seconds. Rapid point-to-point maneuvers over large travel distances, and with different known values of payload mass, can be achieved with high accuracy.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3