Research on Parameter Identification Method of Generator Excitation System Based on Differential Evolution Algorithm

Author:

Li Nan,Liu Yuqun,Geng Bin

Abstract

Abstract In order to solve the problem of large parameter identification error caused by nonlinear links of excitation system being triggered easily when transient stability is under fault state, an improved differential evolution algorithm for system parameter identification is proposed by using the characteristic of artificial intelligence algorithm that the nonlinear link is approximated infinitely through optimization. The improvement of the algorithm solves the problems of slow convergence speed, poor fine optimization ability and easily to produce local optimum when classical artificial intelligence algorithm identifies the parameters of non-linear links. At the same time, in order to solve the problem of inaccurate parameters in the whole identification, a decomposition link identification strategy is proposed. The example analysis shows that the algorithm improves the convergence speed, avoids local optimum and improves the convergence accuracy. According to the proposed parameter identification strategy, the excitation system is decomposed and identified, which improves the accuracy of generator excitation system parameter identification, and provides an accurate model and method for power system stability analysis

Publisher

IOP Publishing

Subject

General Medicine

Reference6 articles.

1. A frequency domain identification method using total least squares” ISIE 2001;Kim,2001

2. Model Parameter Identification of Excitation System based on a Genetic Algorithm Techniques;Abd-Alla,2006

3. Parameter identification of nonlinear excitation system based on improved genetic algorithm;Shuqiang;Electric Power Automation Equipment,2007

4. Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine;Darabi;Journal of Dynamic Systems, Measurement, and Control,2012

5. Changes to IEEE 421.5 recommended practice for excitation system models for power system stability studies;Hajagos;IEEE Power Engineering Society General Meeting,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3