Developing smart multi-sensor monitoring for tool wear in stamping process

Author:

Shanbhag V.V.,Pereira M.P.,Voss B.,Ubhayaratne I.,Rolfe B.F.

Abstract

Abstract Tool wear and galling are of significant concern in the automotive stamping industry, due to the increase in use of higher strength sheet steels in automotive structures and reduced lubrication during stamping production. There are many methods explored in the literature and applied in industry to combat wear in stamping, including new die materials and coatings, alternative lubrication systems and better predictive models. However, smart condition monitoring will continue to be relevant in conjunction with these methods because it can provide further opportunities for production quality and cost improvements, despite the advancements of these other methods. This paper explores the use of multiple sensors and multiple signal processing techniques, aimed at developing a smart multi-sensor method to monitor galling wear. The three main sensors and corresponding signal processing techniques examined are: (i) measurement of punch force signatures analyzed via Principal Component Analysis (PCA); (ii) acoustic emissions signals measured via wideband sensors and examined using time and frequency domain features; (iii) measurement of audio signals in the audible frequency range analyzed via blind signal separation techniques. For all techniques, a semi-industrial stamping test was used to provide realistic production-type conditions, albeit with accelerated wear rates. The relationship between the key outputs from the three sensor/analysis methods were directly compared to a new quantitative measure of galling wear severity. Based on these results, it was observed that a multi-sensor approach for wear condition monitoring provides an opportunity for the development of a smart monitoring tool that can actively track the progression of wear.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3