Bayesian Model-based State Estimation for Mass Production Metal Forming

Author:

Havinga Jos,Mandal Pranab K,Boogaard Ton van den

Abstract

Abstract Modern metal forming factories produce large amounts of data, such as process forces and product geometries. These data contain indirect information about fluctuations in the manufacturing process, such as changes in temperature, material properties and lubrication conditions. In this work, Bayesian inference is used to obtain a probabilistic estimate of the process state based on force measurements in mass production metal forming. The procedure requires statistical assumptions about process state variations, which are often not known as it is usually not possible to directly measure the process state in-line. It is shown that unknown statistical model parameters can be estimated simultaneously with the process state. This leads to an improvement in the accuracy of the state estimate. The procedure is studied using pseudo-data from a mass production sheet bending process, using a finite element model with ten parameters. The material, friction and process parameters are estimated based on process force measurements.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3