Sequential Thermal and Power Integration for Locally Integrated Energy Sector

Author:

Lee P Y,Liew P Y,Walmsley T G

Abstract

Abstract Energy Efficiency is aligned with the United Nation Sustainable Development Goal for ensuring access to affordable, reliable, sustainable and modern energy for all. Locally Integrated Energy Sector (LIES) concept is introduced for energy conservation between industrial, service and residential sectors. The LIES concept extended the Process Integration technique for energy recovery between multiple process plants through the utility system, known as Total Site Heat Integration (TSHI). However, the development of LIES techniques is divided into two main directions, which are heat and power energy integration. This paper introduces a sequential approach for integrating the heat and electricity system in a LIES. The optimization is done based on time frame, which Time Slices (TSLs) are identified based on drastic changes in heat and electricity supply and demand. The heat system is first analysed by TSHI techniques, which the heat excess and demand are determined. The excess and demand is then used for cogeneration opportunities estimation, which the backpressure and condensing turbine are used. The potential power generation estimated then included to analyse the electricity system using Power Pinch Analysis tools. The use of heat and power storage system are also included in the study, for assessing its impact on the LIES’s energy efficiency. The study considered on- and off-grid power supply system to satisfy the power demand of the system. This proposed heat and power optimisation framework aims to select a system configuration with minimal energy cost.

Publisher

IOP Publishing

Subject

General Medicine

Reference24 articles.

1. Synthesis of heat exchanger network;Linhoff;AlChE,1978

2. Energy-Environment closed loop through Oxygen Pinch;Zhelev;Computer and Chemical Engineering,1999

3. Wastewater minimisation;Wang;Chemical Engineering Science,1994

4. Pinch Analysis approach to carbon-constrained energy sector planning;Tan;Energy,2007

5. Analysis of refinary hydrogen distribution systems;Alves;Ind. Eng. Chem. Res.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3