Exsolution of nickel alloys anchored nanoparticles on perovskite oxides for CO oxidation

Author:

Wan Ramli W K,Papaioannou E,Naegu D,Metcalfe I S

Abstract

Abstract Noble metals notably platinum (Pt), is a major element of heterogeneous catalysts, excel in catalysing an extensive number of important catalytic reactions in chemical and automotive industries. Since the increased use of these metals is severely limited because of their high cost and scarcity’s, there is therefore an urgent need for the search of alternative transition metal catalysts that are cheaper and more widely available. This can only be practical if the main drawbacks of these transition metals can be impeded for instance the agglomeration of particles under high temperatures operational conditions with their activity enhanced, such that they can directly replace Pt on a weight-to-weight basis. The exsolution of metallic nanoparticles mainly nickel (Ni) at the surface of perovskite oxides in situ has shown remarkable catalytic activity and durability towards carbon monoxide (CO) and nitric oxide (NO) oxidation and in fuel cells. In this study, for CO oxidation reaction, the catalytic capabilities of exsolved Ni nanoparticles can be further enhanced when iron (Fe) and cobalt (Co) are co-exsolved with Ni, as FeNi and CoNi alloy nanoparticles, forming mixed oxide nanoparticles. FeNi alloy nanoparticles exhibit almost ten times site activities as compared to the Ni nanoparticles, owing to the oxide layer formation which then aided the oxidation of CO. Interesting enough, the CoNi alloy nanoparticles exhibit slightly different morphological and chemical transformation due to the difference in oxidation mechanism and the degree of oxidation, which reveal greater site activities towards CO oxidation. These nanoparticles were also subjected to additional compressive strain when they expanded as a result of them being pinned to the support. These results pave the way for new approach in altering the activity of the exsolved materials for various reactions.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Platinum Group Metals in Catalysis:  Fabrication of Catalysts and Catalyst Precursors;Kettler;Org Process Res Dev. American Chemical Society,2003

2. The Effect of Carbon Monoxide and Hydrocarbons on NOx Storage at Low Temperature;Erkfeldt;Top Catal.,2001

3. Low-temperature oxidation of CO catalysed by Co3O4 nanorods;Xie;Nature. Macmillan Publishers Limited. All rights reserved,2009

4. Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation;Vasilyeva;Appl Surf Sci.,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3