Sulfur copolymers (SDIB) from inverse vulcanization of elemental sulfur (S8) for polymer blend

Author:

Parreño Jr Ronaldo P,Liu Ying-Ling,Beltran Arnel B

Abstract

Abstract Elemental sulfur (S8) is largely available resource as by-product from petroleum refining process which is causing “excess sulfur problem’ due to its limited usage. The utilization of sulfur as valuable material will not only address environmental concerns but provide cost-effective ways of consuming this huge amount of waste to develop new high-value, high-volume products. One facile synthetic method of utilizing sulfur directly as feedstock to produce polymeric material is inverse vulcanization. In this study, sulfur copolymers (SDIB) was synthesized via inverse vulcanization from S8 and processed into polymer blend with component polymers, polybenzoxazine (PBz) and poly(methyl methacrylate) (PMMA) to show its potential processability into polymer blend. Initially, synthesis of SDIB with varying feed ratios of sulfur to comonomer 1, 3-diisopropenylbenzene (DIB) was evaluated for its resulting properties. Spectroscopy showed copolymerization reactions occurred based on the change in characteristic absorption peaks (C=C-H, C=C, C-H) present in the spectra. Thermogravimetric analysis (TGA) indicated that SDIB is more thermally stable with the increase in onset temperature of degradation. Differential scanning calorimetry (DSC) profile exhibited new single glass transition temperature (Tg) that slightly increased with higher DIB ratio indicating evolution of microstructures of copolymers produced. The processability of SDIB into polymer blend was investigated by using SDIB (50 wt% S) with PBz and PMMA. Blending process using simple mixing technique with solvents was carried out for SDIB/PBz (10/10 wt%) and SDIB/PMMA (7.65/7.65 wt%) blend compositions. The results of this study demonstrated that polymercopolymers interactions influenced the phase structure and behaviour with polymer blend of SDIB/PBz showing higher degree of miscibility with more homogeneous and transparent blend as compared to SDIB/PMMA blend. The suitability of polymer blend in electrospinning of nanofibers could provide variety of new applications for SDIB.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3