Effect polyethylene glycol (PEG 400) to the physical properties of gadolinium doped cerium (Ce0.9Gd0.1O1.95) nanoparticles synthesized by co-precipitation method

Author:

Damisih ,Raharjo J.,Yuliani H.,Hapsari A.U.,Masmui ,Pravitasari R.D.,Grandevi

Abstract

Abstract Cerium oxide base materials have been attracting great attention as a promising electrolyte for intermediate temperature of solid oxide fuel cell (IT-SOFC) due to its excellent conductivity at a lower temperature. In this works, cerium from Indonesia local raw material was developed as a cheaper alternative precursor for preparing gadolinium doped cerium (Ce0.9Gd0.1O1.95 or GDC10) electrolyte. The effects of polyethylene glycol 400 (PEG 400) as a surfactant on to physical properties of GDC10 electrolyte were studied. GDC10 powders were synthesized using co-precipitation method with the addition of various PEG 400 concentration i.e 0,1,2 and 3v/v%. Synthesized powders were characterized by using X-Ray Diffraction (XRD), Particle Size Analyzer (PSA), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Fourier Transform Infrared (FTIR) Spectroscopy. The XRD analysis indicates that crystallinity was enhanced and all of the peaks on samples correspond to the fluorite crystal structure of single phase CeO2. The average crystallite size is about 11.37, 7.27, 6.75 and 7.02 nm for PEG 400 concentration of 0, 1, 2 and 3v/v%, respectively. SEM images show different morphology of particle regarding with the addition of surfactant. Particle size analysis exhibits decreasing of particle diameter as the addition of PEG surfactant. The smallest particle size was about 1.47 μm for 1v/v% of PEG concentration. The results of this works confirm that the addition of PEG 400 surfactant strongly affects particle size and morphology of GDC10 powders. However, addition PEG 400 as surfactant should be delivered in a certain amount to give optimum effects where according to this works it is about 1 -2v/v%.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3