Synthesis and Characterisation of Bioactive Glass 13-93 Scaffolds for Bone Tissue Regeneration

Author:

Mehatlaf Auday A,Farid Saad B H,Atiyah Alaa A

Abstract

Abstract A modified sol-gel method was used in the current work to prepare a 13-93 bioactive glass powder, which was selected for the therapeutic actions of its constituent parts. In particular bioactive glass 13-93 can chemically bond with host tissue and induce osteogenesis. The produced gel was calcined at a temperature of 600 °C, while particle size analysis and x-ray diffraction were performed after the preparation of the glass powder. Porous bioactive glass 13-93 scaffolds were synthesised using the polymer foam replication technique that uses polyurethane sponges as a template. Sintering at 700 °C was then performed for one hour to the produce the required structures. After sintering, the microstructure was examined by scanning electron microscope (SEM) and Fourier transform infrared analysis (FTIR). The x-ray diffraction (XRD) results were also examined. The average particle size of bioactive glass 13-93 thus produced was about 2.978 μm, and XRD pattern analysis showed that the porous scaffolds were amorphous. The microstructure of the 13 – 93 glass scaffolds contained interconnected cellular pores and a dense network of bioactive glass, allowing scaffolds with porosity between 80 and 83% to be obtained. An in vitro bioactivity test was performed on the scaffolds by soaking them in a solution of simulated body fluid (SBF). The subsequent SEM images confirmed the bioactivity of the prepared scaffolds based on the formation of obvious and dense hydroxyapatite particles on the surface after 7 days of immersion in SBF. It was thus concluded that bioactive glass scaffold prepared in this work via the polymer foam replication technique has the potential to be used in several future applications.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Bioactive glass scaffolds for bone regeneration and their hierarchical characterization;Jones;J. Engineering in Medicine, Proc. IMechE,2010

2. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique;Qiang;J. Acta Biomaterialia,2008

3. Bioactive glass 58S prepared using an innovation sol-gel process;Bui;Processing and Application of Ceramics,2019

4. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts;Bielby;Tissue Engng,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3