A comparison of classification algorithms for hate speech detection

Author:

Putri T T A,Sriadhi S,Sari R D,Rahmadani R,Hutahaean H D

Abstract

Abstract Freedom of opinion through social media is frequently affect a negative impact that spreads hatred. This study aims to automatically detect Indonesian tweets that contain hate speech on Twitter social media. The data used amounted to 4,002 tweets related to politics, religion, ethnicity and race in Indonesia. The application model uses classification methods with machine learning algorithms such as Naïve Bayes, Multi Level Perceptron, AdaBoost Classifier, Decision Tree and Support Vector Machine. The study also compared the performance of the model using SMOTE to overcome imbalanced data. The results show that the Multinomial Naive Bayes algorithm produces the best model with the highest recall value of 93.2% which has an accuracy value of 71.2% for the classification of hate speech. Therefore, the Multinomial Naïve Bayes algorithm without SMOTE is recommended as the model to detect hate speech on social media.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reading Between the Lines: Machine Learning Ensemble and Deep Learning for Implied Threat Detection in Textual Data;International Journal of Computational Intelligence Systems;2024-07-15

2. SMOTE for enhancing Tunisian Hate Speech detection on social media with machine learning;International Journal of Hybrid Intelligent Systems;2024-05-08

3. Detection of twitter hate tweets leading to crime using multiseries bert model;Journal of Information and Optimization Sciences;2024

4. Beyond Language Boundaries: Analysis and Ensemble Approach of Hate Speech Detection in South Asian Social Media;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13

5. Violent Speech Detection in Educational Environments;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3