Non-metallic lightning strike protection coating for wind-turbine blades

Author:

Kumar V,Saha S,Millen S,Murphy A,Seta B,Spangenberg J,Tobin J,Knouff B,Hassen A,Kunc V

Abstract

Abstract The increasing use of Carbon Fiber Reinforced Polymer (CFRP) composites in the wind energy industry presents a challenge concerning lightning strike protection (LSP). Due to their low electrical conductivity, these materials are inferior to metals in dissipating electrical currents generated by lightning strikes, potentially leading to catastrophic damage. The current LSP system for wind turbine blades involves metallic lightning arrestors, which may only sometimes be effective due to the accumulation of debris and salt on other parts of the blade. Other commercially available products, such as diverter strips and nano-filler coatings, are expensive and impractical for use throughout the entire blade. Recently, researchers have proposed using electrically conductive polymeric coatings as a potential solution. These coatings are easy to apply and can be spray-coated, painted, or manufactured via automation. In this study, newly developed polymeric coating solutions were experimentally tested and compared to traditional metallic-based LSP systems. The experiments showed promising results in dissipating the current generated by lightning strikes. In addition, the thicker coatings reduced catastrophic damage, including puncture, fiber breakage, and resin evaporation, compared to thinner coatings. Overall, the study highlights the potential of polymeric coatings as a viable solution for lightning strike protection in the wind energy industry.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3