Impact of shell structure stiffness on aero-structural coupling in wind turbine rotor blades

Author:

Balzani Claudio,Gebauer Julia

Abstract

Abstract Wind turbine rotor blades are heavily loaded composite structures that experience a mixture of aerodynamic, inertial, gravitational, and gyroscopic forces during their operation life. Due to the high loads, the cross-sections of the blades are subjected to in-plane and out-of-plane deformations. The out-of-plane deformations are referred to as shear warping while the in-plane deformations are also called blade breathing. Blade breathing depends on the magnitude of the mechanical loads, which are expressed by means of internal forces and moments, and the stiffness of the blade shell. In this work, the relationships between in-plane cross-sectional deformations and internal loads are investigated. For the quantification of the deformation, a reference blade is studied via 3D finite shell element simulations for different loading scenarios. The cross-section of interest is located at the radial position of maximum chord. To compare the shape of the cross-sections in the undeformed and the deformed configurations, a procedure is proposed to relate the positions of nodes associated with the cross-section of interest in both configurations to a joint coordinate system. The shape of the deformed cross-section is then extracted and compared with the undeformed configuration. The comparison is executed for the individual internal forces and moments, namely flapwise and edgewise bending moments, normal force, shear forces, and torsion moment, respectively. The deformation patterns are discussed and it is addressed how these may influence the aerodynamic behavior of the cross-section under consideration.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3