Cure characterisation and prediction of thermosetting epoxy for wind turbine blade manufacturing
-
Published:2023-11-01
Issue:1
Volume:1293
Page:012015
-
ISSN:1757-8981
-
Container-title:IOP Conference Series: Materials Science and Engineering
-
language:
-
Short-container-title:IOP Conf. Ser.: Mater. Sci. Eng.
Author:
Jørgensen Jesper K.,Mikkelsen Lars P.,Andersen Tom L.
Abstract
Abstract
In the wind industry, the increasing length of turbine blades and the use of thick composite sections make it vital to understand the thermoset and the underlying curing process. In this study, the curing of a specific thermoset epoxy for application in wind turbine blades is characterised by differential scanning calorimetry. The thermoset is analysed under dynamic and isothermal conditions to determine the complex cure behaviour under these various conditions. The data is fitted to determine firstly; the cure kinetics of the material through a kinetic model. Secondly; the phenomenon of the glass transition temperature Tg
is studied to predict the development of Tg
as a function of the degree of cure. Thirdly, a Diffusion-Kinetic model was utilised to make more accurate cure predictions based on the interaction between kinetic chemical reactions and diffusion control affecting the reaction rate through the incorporation of the glass transition temperature. A simple experimental framework for validating the diffusion-kinetic model was used to make a final validation of the model predictions on a larger scale. A set of final parameters is presented for application in a full diffusion-kinetic model for cure predictions and simulations beyond this study.
Subject
Industrial and Manufacturing Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献