Numerical modeling of fiber orientation in additively manufactured composites

Author:

Šeta Berin,Sandberg Michael,Brander Marco,Mollah Tusher,Pokkalla Deepak Kumar,Kumar Vipin,Spangenberg Jon

Abstract

Abstract Additive manufacturing has undergone a significant transformation, evolving from a mere prototyping technique to a reliable and proven manufacturing technology that can produce products of varying sizes and materials. The incorporation of fibers in additive manufacturing processes has the potential to improve a range of material properties, including mechanical, thermal, and electrical properties. However, this improvement is largely dependent on the orientation of the fibers within the material, with the properties being enhanced primarily in the direction of fiber orientation. As a result, accurately predicting and controlling the fiber orientation during the extrusion or deposition process is critical. Various methods are available to control fiber orientation, such as manipulating the nozzle shape, extrusion and nozzle speed, the gap between the nozzle and substrate, as well as fiber features like aspect ratio and volume fraction. At the same time, the presence and orientation of fibers can significantly impact the flow pattern and extrusion pressure conditions, ultimately affecting the formation of printed strands in a manner distinct from those without fibers. For that reason, our study utilizes computational fluid dynamics to anticipate and comprehend the printing conditions that would result in favorable fiber orientations and strand shapes, incl. corner printing. Our findings may be utilized to determine optimal toolpaths for 3D printing composites, as well as printing conditions that will facilitate the achievement of the desired fiber orientation within individual strands.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3