Comparison of gridded datasets for the simulation of streamflow in Africa

Author:

Tarek Mostafa,Brissette François P.,Arsenault Richard

Abstract

Abstract In recent decades, many parts of the African continent have experienced high precipitation variability with periodic drought and flood events. However, the network of streamflow gauges is too sparse in most countries to adequately capture these variations. In addition, no observed reference climatological dataset exists to adequately represent precipitation and temperature changes within all topographic and climatic zones. Consequently, the use of global gridded datasets needs to be considered. This paper aims to use the different available gridded datasets as inputs to a hydrological model to evaluate dataset performance. Nine precipitation and two temperature gridded datasets are used to this effect. The precipitation datasets include two gauged-only products, two satellite products corrected using ground-based observations, four reanalysis products and one merged product of gauge, satellite, and reanalysis. The two temperature datasets include one gauged-only and one reanalysis product. The ten precipitation and two temperature datasets were combined in their 18 possible arrangements for analysis purposes. Each combination was used to force the HMETS lumped hydrological model. The model parameters were calibrated individually for each combination against the streamflow records of 850 African catchments. The Kling-Gupta Efficiency (KGE) was used to evaluate the simulation performance. Results show thatboth temperature datasets performed equally well. Large differences were however observed between precipitation datasets. The MSWEP merged-product was the best-performing precipitation dataset, followed by CHIRPS satellites and ERA5 reanalysis products, respectively. The performance of both gauged-only datasets (CPC and GPCC) was inferior, outlining the limitations of extrapolating information in data-sparse regions.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3