Experimental Study on GNP Based Nanofluid Phase Change Material for Cooling Application

Author:

Ranjith Thode,Sathishkumar A

Abstract

Abstract The current study aims to analyze the solidification and melting characteristics of nanofluid phase change material (NFPCM) for building cooling applications. The NFPCM were prepared by using graphene nanoplatelets (GNP) in different concentrations (0.2, 0.4 & 0.6 Wt. %) and DI water as base PCM. The NFPCM was prepared using two step methods and stability of the NFPCM was analyzed using visual sedimentation method. The experimentation was conducted in -12 °C and -9 °C surrounding bath temperatures. The Sub-cooling was eliminated completely for the addition of SDBS and GNP in maximum concentration. The experimental results showed that the 10 % and 8.5 % reduction in solidification time for 0.6 wt. % GNP in base PCM for the surrounding bath temperature of -12 °C and -9 °C respectively. Also, the DSC analysis was conducted for the heating rate of 5 K/min and the reduction of enthalpy during heating and cooling was noticed 14 % and 11 % respectively. It is observed that the reduction of overall solidification time of the NFPCM will have the predominant effect in the chiller operation time.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3