Algorithms and software for optimal management of raw materials, fuel and energy resources in blast furnace production

Author:

Spirin N A,Gurin I A,Lavrov V V,Shchipanov K A

Abstract

Abstract The structure of optimization model of optimal management of raw materials, fuel and energy resources in the blast-furnace shop of iron and steel works is represented. The following blocks are taken as system basis: 1) calculation of the set of parameters that characterize the thermal, gas-dynamic, slag and blasting modes for every blast furnaces of the shop during the base period; 2) calculation of linearized model coefficients (constants of transferring via different exposure pathways) individually for every blast furnace as well as properties of iron ore raw materials, fluxing additions, blasting parameters, parameters of fuel-enriched blast influencing the technical-and-economic indices of separate furnaces performance, their thermal, gas-dynamic and slag operation modes in the course of blast-furnace melting according to UrFU-MMK blast-furnace production model within the base period; 3) solution of tasks that consider the optimal allocation of raw materials, fuel and energy resources for the project period of blast furnaces operation; 4) analysis of obtained results and providing of recommendations on the optimization of blast furnaces parameters. The developed functional model of optimal distribution of raw materials, fuel and energy resources for the engineering and technology personnel of blast-furnace shop is illustrated; the main functions and interconnections between the separate functional blocks are defined. The functions of created “Optimal management of raw materials, fuel and energy resources in the blast-furnace production” software that is realized in the Microsoft Visual Studio 2017 (C# programming language) programming environment in the form of web application are pointed out. The program product provides the engineering and technology personnel of blast furnace shop of iron and steel works with the opportunity to solve the tasks of optimal distribution of fuel and energy resources (natural gas and oxygen consumption) within the group of blast furnaces in the different technological situations.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3