Performance Analysis of CUDA by Implementation of Hypergraph Partitioning for Parallelizing Sparse Matrix-Vector Multiplication Using Quadro K4200

Author:

Murni ,Handhika T

Abstract

Abstract This paper addresses the performance analysis of sparse matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. Quadro K4200 is the GPU that is used in this paper. On the implementation of matrix-vector multiplication, various sizes and types of matrices are attempted. Our results show that on the average scenarios with 2 partitions, 4 partitions, 8 partitions, 16 partitions and 32 partitions in 1024 threads, CUDA performs up to 700 × better than sequential programming.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Performance Evaluation of Fast Smith-Waterman Algorithm for Sequence Database Searches using CUDA GPU-based Parallel Computing;Bustamam;Journal of Next Generation Information Technology,2014

2. Decomposing Irregularly Sparse Matrices for Parallel Matrix-Vector Multiplication;Catalyurek;Parallel Algorithms for Irregularly Structured Problems, Irregular’96, In Lecture Notes in Computer Science,1996

3. Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication;Catalyurek;IEEE Transactions on Parallel and Distributed Systems,1999

4. Simplicity Versus Accuracy in a Model of Cache Coherency Overhead;Eggers;IEEE Transactions on Computer,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3