Travel Time Estimation for Destination In Bali Using kNN-Regression Method with Tensorflow

Author:

Murni ,Kosasih R,Fahrurozi A,Handhika T,Sari I,Lestari D P

Abstract

Abstract On a tour activity, travel time estimation is needed so that the travel itinerary goes according to the plan. Travel time estimation is very important so we can estimate the time needed to arrive at the destinations in the travel itinerary. Therefore we need a method that can estimate travel time from one place to another. In this study, we propose the k-Nearest Neighbors Regression (kNN-Regression) method with Tensorflow to construct an estimation model. The proposed number of features in our estimation model is 8 features, i.e. zone information, time information, day information, weather information, temperature information, wind speed information, humidity information, and precipitation information. The data obtained from travel information from Ngurah Rai airport to Kuta Beach using GPS and weather information using weather application in real-time. We divide our data into two groups: a historical group consisting of 177 data and a testing group consisting of 51 data. In the testing stage, kNN-Regression will find the historical data closest to the testing data, so that the estimation value of the travel time of some testing data is not much different from the value of the nearest historical data. As a result, our proposed model gives the Mean Absolute Error (MAE) of 2.196078, Root Mean Square Error (RMSE) of 2.977036294 and accuracy rate 88.1819%.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction types of legal cases in Indonesia using the TF-IDF method and the KNN algorithm;TOWARD ADAPTIVE RESEARCH AND TECHNOLOGY DEVELOPMENT FOR FUTURE LIFE;2023

2. Implementation of Machine Learning in Predicting Length of Punishment at Bandung Court;2022 International Conference of Science and Information Technology in Smart Administration (ICSINTESA);2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3