The Degradation of SA213-T22 steels Coated with Ni-based Alloy Containing WC-Co in Simulated Molten Salt Atmospheres

Author:

Thongyoug Penpisuth,Treewiriyakitja Paweena,Keereerakwattana Methawat,Tungtrongpairoj Jennarong

Abstract

Abstract This work reveals the high-temperature oxidation resistance of WC-Co coated on SA213-T22 by High-Velocity Oxy-Fuel (HVOF) technique in simulated molten salt atmospheres and compare that with the uncoated Cr-containing steel. The corrosion behaviors of SA213-T22 coated and uncoated with WC-Co alloys were studied by immersion test under simulated molten salt atmospheres at 600 °C for 3 hours and investigated their corrosion current densities by electrochemical test. Scanning electron microscope equipped with EDS technique and X-ray diffraction were used to evaluate the surface morphology and phase constitution. The oxidation rate of the coated and uncoated steels was observed under simulated atmospheres at 750 °C for 120 hours before the immersion test. The mass gain scale increase with increasing the oxidation time and the oxidation rate of scale are limited by the WC-Co alloys coating layer, which acted as a protective layer. The low corrosion current density of the WC-Co self-fluxing coated steel after oxidation was shown 5 – 10 μA/cm 2 after the corrosion test in molten salt for 3 hours. After the immersion, the scale layer on the uncoated specimen was disappeared, but one-half of the oxidized coating layer on the coated specimen has remained.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3