Design Enhancement and Thermal Analysis of Disc Brake

Author:

Roshan Rino B,Pranesh Kumar M,Velmurugan S

Abstract

Abstract In automobiles, the function of disc brakes is controlled by jamming the brake pads opposed to a rotary disc that is usually attached to a wheel. A composite material set is preferred to manufacture the brake pads. This braking process produces frictional forces which cause deceleration and eventually stops the rotation of the disc. The indulgence of the generated heat due to friction is important for successful braking. Changes in temperature of the brake cause radial and axial bend; this variation in shape, in turn, distresses the proper alignment of the pads and the disc. The aim of this paper is to design a brake disc and perform the thermal stress analysis by applying five different materials namely Gray cast iron (GCI), reinforced Ti-composite (TMC),Ti-alloy (Ti-6Al-4V), reinforced Al-Cu alloy(AMC 2), and reinforced Al-composite(AMC 1).The modelling and analysis of the disc brake are achieved with the aid of SOLIDWORKS and ANSYS software.

Publisher

IOP Publishing

Subject

General Medicine

Reference12 articles.

1. Design of a lightweight automotive brake disc using finite element and Taguchi techniques;Grieve;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,1998

2. 3D investigation of thermal stresses in a locomotive ventilated brake disc based on a conjugate thermo-fluid coupling boundary conditions;Ghadimi;International communications in heat and mass transfer,2013

3. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermo-mechanical coupling model;Hwang;Journal of mechanical science and technology,2010

4. Temperature field and thermal stress analyses of high-speed train brake disc under pad variations;Jiguang;The Open Mechanical Engineering Journal,2015

5. Thermal stress analysis of different full and ventilated disc brakes;Saiz;Frattura Ed Integrita Strutturale,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3