Author:
Chen Chang-Feng,Mohd Zain Azlan,Mo Li-Ping,Zhou Kai-Qing
Abstract
Abstract
Artificial bee colony algorithm (ABC) and particle swarm optimization (PSO) are both famous optimization algorithms that have been successfully applied to various optimization problems, especially in function optimization. Those two algorithms have been attracting more and more research interest because of their efficiency and simplicity. However, PSO has poor exploration capabilities and thus is easy to fall into the local optimum; Likewise, ABC has low convergence speed. To address these shortcomings, firstly, we improved the ABC with the combination of greedy selection and crossover, secondly, a sine-cosine method will be used to help PSO jump into local optimal. Finally, a new hybrid algorithm based on improved ABC and PSO are proposed. Moreover, four functions are used to verify the effectiveness of the proposed algorithm, and the results show that, compared with other well-known algorithms, ABC-PSO is more efficient, faster and more robust in function optimization.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献