Facial Expression Transfer using Generative Adversarial Network : A Review

Author:

Adibah Najihah Mat Noor Noor,Mohd Suaib Norhaida

Abstract

Abstract There is high demand of realistic facial expression in current computer graphics and multimedia research. Realistic and accurate facial expression can guarantee the animated character to deliver the expression correctly. However, generating facial expression requires hard work, effort and time since high realism of facial expression need to be in details. There are some available methods in current research area such as face warping to the target, re-use the existing images and also models for generating facial image with certain attribute. Based on literature reviews, current trend for facial expression is using the deep learning method such as generative model like Generative Adversarial Network (GANs). Some of GANs that recently available are Conditional Generative Adversarial Network (cGANs), Double Encoder Conditional GAN (DECGAN), Conditional Difference Adversarial AutoEncoder (CDAAE), Geometry-Guided Generative Adversarial Network (G2GAN), and Geometry-Contrastive Generative Adversarial Network (GC-GAN). These methods actually helped in creating more realistic images, reaching out the realistic facial expression and good identity preservation. This paper aims to review available GANs, find out related features to these methods and also performance of these methods that are useful in facial expression transfer process

Publisher

IOP Publishing

Subject

General Medicine

Reference22 articles.

1. Facial expression editing in video using a temporally-smooth factorization;Yang,2012

2. Semantic facial expression editing using autoencoded flow;Yeh,2016

3. Visio-lization: generating novel facial images;Mohammed,2009

4. Exprgan: Facial expression editing with controllable expression intensity;Ding,2018

5. Generative adversarial nets;Goodfellow,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simplified face image generation and aging with conditional generative adversarial networks;ETLTC-ICETM2023 INTERNATIONAL CONFERENCE PROCEEDINGS: ICT Integration in Technical Education & Entertainment Technologies and Management;2023

2. Generative Adversarial Networks: a systematic review and applications;SHS Web of Conferences;2022

3. The study of suitability of alkaline treatment for lignin reduction in banana stem and peel using response surface methodology;INTERNATIONAL CONFERENCE ON BIOENGINEERING AND TECHNOLOGY (IConBET2021);2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3