Author:
Adibah Najihah Mat Noor Noor,Mohd Suaib Norhaida
Abstract
Abstract
There is high demand of realistic facial expression in current computer graphics and multimedia research. Realistic and accurate facial expression can guarantee the animated character to deliver the expression correctly. However, generating facial expression requires hard work, effort and time since high realism of facial expression need to be in details. There are some available methods in current research area such as face warping to the target, re-use the existing images and also models for generating facial image with certain attribute. Based on literature reviews, current trend for facial expression is using the deep learning method such as generative model like Generative Adversarial Network (GANs). Some of GANs that recently available are Conditional Generative Adversarial Network (cGANs), Double Encoder Conditional GAN (DECGAN), Conditional Difference Adversarial AutoEncoder (CDAAE), Geometry-Guided Generative Adversarial Network (G2GAN), and Geometry-Contrastive Generative Adversarial Network (GC-GAN). These methods actually helped in creating more realistic images, reaching out the realistic facial expression and good identity preservation. This paper aims to review available GANs, find out related features to these methods and also performance of these methods that are useful in facial expression transfer process
Reference22 articles.
1. Facial expression editing in video using a temporally-smooth factorization;Yang,2012
2. Semantic facial expression editing using autoencoded flow;Yeh,2016
3. Visio-lization: generating novel facial images;Mohammed,2009
4. Exprgan: Facial expression editing with controllable expression intensity;Ding,2018
5. Generative adversarial nets;Goodfellow,2014
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献