Intergrating a Minimal Differentiator Expressions Approach into CBR for Linguistic Pattern reuse in Crime Relation: Proposed Method

Author:

Ikhwan Syafiq M.,Shukor Talib M.,Salim Naomie,Mohd Yunos Zuriahati,Haron Habibollah

Abstract

Abstract The relation extraction of crime news can help the monitoring specialists to accelerate the crime investigation. However, constructing patterns or designing templates manually requires domain experts. Also the built patterns do not guarantee complete differentiation among different relation instances. The automatic detection of crime entities and relationship among entities can help the regulatory authorities to accelerate the crime investigation and decision support instead of being reliant on manual process. This study aims to increase the effectiveness of the extraction of crime entities and relationship among entities based on the determination of crime lingusitic pattern using Minimal Differentiator Expressions (MDEs) that represent the cases that will be used by the CBR classifier. The proposed extraction methods can help in compiling a highly accurate and machine-understandable crime knowledge bases which can support the regulatory authorities’ investigation. This paper conducted on our proposed MDEs algorithm for linguistic pattern reuse in CBR approaches.

Publisher

IOP Publishing

Subject

General Medicine

Reference9 articles.

1. Bacterial named entity recognition based on dictionary and conditional random field,;Wang;Proc. - 2017 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2017,2017

2. Crime base: Towards building a knowledge base for crime entities and their relationships from online news papers,;K;Inf. Process. Manag.,2019

3. Graph-based clustering of extracted paraphrases for labelling crime reports,;Das;Knowledge-Based Syst.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3