Modelling of Piezoelectric Sensor with Different Materials Approach for Partial Discharge Detection on Power Transformer: PZT-5H, ZnO and AlN

Author:

Akashah N A,Rohani M N K H,Rosmi A S,Isa M,Ismail B,Khalid K N,Mustafa W A,Wooi C L

Abstract

Abstract The acoustic emission (AE) technique is one of the unconventional methods of partial discharges (PDs) detection. It plays a most important role in oil-filled power transformers diagnostics because it enables the detection and online monitoring of PDs as well compared to the conventional method for PDs detection which are not suitable for on-site measurement due to electrical disturbance. In this paper, the acoustic based on piezoelectric sensor by different material is modelled in order to be able to obtain PDs signal occurred in power transformers. Modelling of a piezoelectric sensor with different material which is PZT-5H, ZnO, and AlN is approached in order to investigate the performance of resonant frequency, electric potential, and the performance in processing in order to match the range of AE detection. Piezoelectric materials have become very useful in processing devices because of their electrical-mechanical mutuality. Study was performed on frequency target of PDs should be higher and in the range of 10 kHz -300 kHz in order to prevent the power transformer from failure or breakdown and it has been found out by proven from analytical and simulation result by using the Finite Element Method (FEM). Based on this information, acoustic sensor is analyses with different types of cantilever beam and piezoelectric material and different length dimension of the beam in order to analyses the performance between them. Based on the result, the piezoelectric material that be chosen in this project is ZnO due to its high piezoelectric coupling and environmental friendly is used in order to support green technology compared to others material discussed which is harmful even though produced high performance. This detection method gave some improvement in monitoring system PD activities in the transformer’s tank.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Flexible Rogowski Coil Sensor for Partial Discharge Detection in Power Cables;2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET);2023-09-12

2. Synthesis of NiS2 nanomaterial as wide range pressure sensor;Journal of Vacuum Science & Technology B;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3