Investigation into the effects of surface condensation in steam-driven twin screw expanders

Author:

Grieb Manuel,Brümmer Andreas

Abstract

Abstract During the operation of twin screw expanders with slightly superheated vapours or even two-phase fluids, surface condensation on machine parts occurs during the filling period and the expansion phase when the working fluid is in contact with cooler inner surfaces. This heat exchange from the working fluid to adjacent machine parts effects the working cycle and the efficiency of these machines. Short time scales and the periodicity of the process indicate the condensation process is best described by models for dropwise condensation. In this paper the effects of surface condensation on the operation of twin screw expanders are initially discussed in a simulation-based investigation. Chamber model simulation coupled with a thermal analysis is used for the thermodynamic simulation, whereby heat transfer coefficients are systematically varied. It is found that during the inlet phase condensate emerges on the inner surfaces of the machine being substantially cooler than the working fluid. This results in a higher mass being trapped within the working chamber and, thus, an increasing mass flow rate of the machine. An increase in power output is, however, not observed. The results obtained from chamber model simulations are finally compared against experimental data of a screw expander prototype.

Publisher

IOP Publishing

Subject

General Medicine

Reference20 articles.

1. Effects of spontaneous condensation in steam-driven screw expanders;Grieb,2017

2. Simulation-based investigation of spontaneous condensation in steam-driven screw expanders;Grieb,2019

3. Effects of surface condensation in an idealised steam-driven screw expander;Grieb,2018

4. Die Oberflächenkondensation des Wasserdampes;Nußelt;Zeitschrift des Vereins deutscher Ingenieure,1916

5. Calculation of heat transfer during film condensation with condensate properties as a function of temperature (in russian);Voskresenskij,1948

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3