SoftMax Neural Best Approximation

Author:

Almurieb Hawraa A,Bhaya Eman S

Abstract

Abstract Neural networks have a great place in approximating nonlinear functions, especially those Lebesgue integrable functions that are approximated by FNNs with one hidden layer and sigmoidal functions. Various operators of neural networks have been defined and achieved to get good rates of approximation depending on the modulus of smoothness. Here we define a new neural network operator with a generalized sigmoidal function (SoftMax) to improve the rate of approximation of a Lebesgue integrable function Lp , with p < 1, to be estimated using modulus of smoothness of order k. The importance of choosing SoftMax function as an activation function is its flexible properties and various applications.

Publisher

IOP Publishing

Subject

General Medicine

Reference9 articles.

1. Continuous Valued Neural Networks: Approximation Theoretic Results in;Cybenko,1988

2. Universial Approximation Bounds for Superpositions of a Sigmodial Function;Barron;IEEE Trans., Inform. Theory,1993

3. Simultaneous Approximation with Neural Networks;Dingankar;Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium,2000

4. Interpolation and best simultaneous approximation;Levis;Journal of Approximation Theory,2010

5. Generalization Bounds for Neural Networks via Approximate;Daniely,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3