Author:
Jabir Ruqaya Khairy,Hadi Nizar Jawad,AL-Zubiedy Ali Abd-Alameer
Abstract
Abstract
This work focuses on the re-use of biopolymer wastes to produce the pipes and reduce the impact of these materials on the environment. The ratios of 10, 20, 30 and 40wt% of recycled polyethylene terephthalate (RPET) were added to the reference blend, which consists of recycled low-density polyethylene (RLDPE) and recycled high-density polyethylene (RHDPE). Rheological and mechanical tests were performed on these blends. The blend of RLDPE and RHDPE was already successful in the manufacturing of pipes. The capillary rheometer was used to check the shear viscosity and shear stress behaviour with the shear rate increasing for different blends. The density, tensile strength, elastic modulus and impact strength were also tested for all blends. The results showed that the shear viscosity decreases and the shear stress increases with the shear rate increasing for all blends. In general, the addition of RPET to the reference blend decreases the viscosity at each shear rate. The blends of ten wt% and 20wt% are more compatible with the reference blend, while the blends of 30wt% and 40wt% exhibit a clear deviation after a shear rate of 300. The density indicates an increase with the increase of RPET to the reference blend. The tensile strength increases and impact strength decreases with the increase of RPET up to 30%. After that, the tensile strength decreases and impact strength increases up to the 40wt% RPET. The results showed that the rheological test can be used to predict the mechanical behaviour. Additionally, there was a good agreement observed between the rheological and mechanical tests. The ten wt% and 20wt% blends were more suitable for this task.
Reference19 articles.
1. Detailed comparison of compatibilizers MAPE and SEBS-g-MA on the mechanical/thermal properties, and morphology in ternary blend of recycled PET/HDPE/MAPE and recycled PET/HDPE/SEBS-g-MA;Taghavi;J. of Elastomers & Plastics,2018
2. Preparation and characterization of poly (ethylene terephthalate)/hyper branched polymer nano composites by nelt blending;Ahani;Nano composites,2016
3. Study the relation between mechanical and thermal behavior of PP-runner waste blends;Hadi;J. of Int. Academic Research for Multidisciplinary,2014
4. Recycling of waste from polymer materials: an overview of the recent E\works;Hamad;Polymer degradation and Stability,2013
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献