Author:
Lukina I N,Chernogorova O P,Drozdova E I,Ekimov E A,Apostolova M O,Prokopenko D A,Soldatov A V,Benavides V
Abstract
Abstract
The effect of high-pressure synthesis temperature on the structure and indentation characteristics of the superelastic hard carbon formed from amorphous fullerites and on the tribological properties of the Co-based composite materials (CM) reinforced by the particles of such carbon has been studied by Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), indentation measurements, and tribological tests. It is shown that ball milling (for 48 h) of C60 fullerite crystals results in the amorphization of the product of fullerite transformation upon their high-pressure treatment at temperatures above the stability limit of fullerene molecule (∼800°C). An increase in synthesis temperature at 8 GPa from 800°C to 1200°C leads to a gradual graphitization of the structure of amorphous fullerite derived carbon. This decreases its hardness and indentation modulus from 32 to 18 GPa and from 256 to 95 GPa, respectively, and increases the elastic recovery (from 80% to 86%). The best tribological characteristics of the CM are attained at the maximum particle hardness, which is realized in the CM synthesized at 800°C. When the synthesis temperature is elevated to 1200°C, the friction coefficient and wear rate of the CM increase, but they remain substantially lower than those of the matrix cobalt.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献