An adaptive RBF hidden layer generation algorithm

Author:

Chen Haibo,Zhang Chenyu,Hu Gao

Abstract

Abstract We presents an adaptive learning algorithm of RBF neural network. This algorithm uses an adaptive splitting operation based on network sensitivity and sample density to dynamically change the number of nodes in the hidden layer of RBF network. At the same time, a refactoring operation based on energy consumption is proposed, and the connection weights of the hidden layer and the output layer are obtained by using the least square method. In the experiment of iris sample classification, the recognition rate of the model is 95%.

Publisher

IOP Publishing

Subject

General Medicine

Reference6 articles.

1. Universal Approximation Using Radial-Basis-Function Networks;Park;Neural Computation

2. Radial Basis Function Neural Classifier using a Novel Kernel Density Algorithm for Automobile Sales Data Classification;Mary;International Journal of Computer Applications,2011

3. Automatic construction of the complete architecture of a radial basis function network using differential evolution;Tovias-Alanis,2017

4. A combined SMOTE and PSO based RBF classifier for two- class imbalanced problems;Gao;Neurocomputing,2011

5. A new optimized GA-RBF neural network algorithm.[J];Jia;Computational Intelligence & Neuroscience,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3