Application of K-means Algorithm in Image Compression

Author:

Wan Xing

Abstract

Abstract In machine learning problems, there are two main algorithms: supervised learning and unsupervised learning. Supervised learning algorithms can be used to classify data for tagged data; non-supervised learning algorithms can be used to cluster data for unlabeled data. This paper discusses the basic principles of clustering algorithm and selection of key parameters of clustering algorithm. The application of clustering algorithm in image compression is also analyzed. This paper also emphasizes the problems that should be paid attention to when using clustering. Finally, a practical case of image compression with K-means is given.

Publisher

IOP Publishing

Subject

General Medicine

Reference10 articles.

1. The art of writing a scientific article;Van der Geer;J. Sci. Commun.,2010

2. Algorithm as 136: a k-means clustering algorithm;Hartigan;Journal of the Royal Statistical Society,1979

3. An efficient k-means clustering algorithm: analysis and implementation;Kanungo;IEEE Transactions on Pattern Analysis & Machine Intelligence,2002

4. Extensions to the k-means algorithm for clustering large data sets with categorical values;Huang;Data Mining & Knowledge Discovery,1998

5. Constrained k-means clustering with background knowledge;Wagstaff,2001

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistically Improving K-means Clustering Performance;2024 32nd Signal Processing and Communications Applications Conference (SIU);2024-05-15

2. Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory;Computers, Materials & Continua;2024

3. Parametric Pipelined k-Means Implementation for Hyperspectral Processing on Spacecraft Embedded FPGA;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

4. Comparison of K-Means, K-Means++, X-Means and Single Value Decomposition for Image Compression;2023 27th International Conference on Circuits, Systems, Communications and Computers (CSCC);2023-07-19

5. Application of K-means Algorithm in Kansei Engineering;2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS);2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3