Experimental study of the impact of the number of blades on the profile drag of UAV helicopter rotors in hover

Author:

Panayotov F,Dobrev I,Massouh F,Todorov M

Abstract

Abstract Due to the motion of tip and root vortices of helicopter rotor blades and the inevitable blade-vortex interactions in multi-blade rotors, the profile drag of all individual blades is increased, when compared to the absence of any blade-vortex interaction. Different factors like the speed of rotation of the rotor and the number of blades greatly impact the magnitude of the profile drag increase. This effect is additionally worsened with the low- Reynolds operational conditions of small-sized UAV helicopter rotors. In addition, there is an initial upward motion of the tip vortex and thus there are three scenarios for the blade-vortex encounter, depending on whether the vortex emitted by the previous blade is still above, on or below the plane of rotation of the blades. All those uncertainties motivated the authors to carry- out this present experimental study. The results are shown in a convenient form. In hover, the profile drag increase is shown to be greater with increased number of blades and higher rotational speeds as there is less time for the preceding vortex to clear the path of the following blade.

Publisher

IOP Publishing

Subject

General Medicine

Reference11 articles.

1. Basic understanding of airfoil characteristics at low Reynolds numbers;Winslow;Journal of Aircraft,2018

2. Experimental investigation of micro air vehicle scale helicopter rotor in hover;Benedict,2015

3. Understanding the aerodynamic efficiency of a hovering micro-rotor;Ramasamy;Journal of the American Helicopter Society,2008

4. Rotor hover performance and flowfield measurements with untwisted and highly-twisted blades;Ramasamy;36th European Rotorcraft Forum,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3