Numerical and Experimental Protective Performance Evaluation of Sacrificial Member Effects on the Protective Structures

Author:

Kwon Jihye,Han Seungsu,Kim Sungkon

Abstract

Abstract Principal objectives of the protective design are on protecting life, property, facility, system device and operations by developing protective design measures that reduce threat level and vulnerability while enhancing structural resilience. Protective design procedure against blast hazard would be accomplished with the threat identification, risk-based assessment, and designing the members and structures based on the proper design requirements. Considerable necessity before the protective design is to find out the various measures reducing the blast effect such as security measures, architectural configuration, and mitigation schemes without any structural strengthening the structure itself. This paper addresses the mitigation scheme to reduce the blast overpressure in general, and then a specific barrier type is introduced as sacrificial structures with the performance verification. The general schemes to reduce the blast pressure by installing barriers is mainly using RC type structures which have typical shapes and sizes. This barrier type has advantages both on installing easiness and cost. In the barrier type sacrificial wall structure, instead of using the normal RC structures, enhanced-cement concrete and composites are useful to improve protective performance and scabbing of the back surface of the RC walls. A series of the wall type RC barriers are modeled and fabricated to investigate and verify blast pressure migration and protective performance based on theoretical and numerical analysis.

Publisher

IOP Publishing

Subject

General Medicine

Reference6 articles.

1. Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates;Ghani Razaqpur;Composites. Part B, Engineering,2007

2. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts;Pantelides,2012

3. Durability study of a polymeric composite material for structural applications;Al-Haik;Polymer Composites,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3