Local and global assessments of a subsea riser-spool connection under dropped impact loads

Author:

Liu Z,Igland R,Bruaseth S

Abstract

Abstract Subsea riser tube and spool is often used together to connect the riser of jacket to flowline or pipeline. Due to its limited size (less than 200 m), the location is within the lifting zones of the platform. Consequently, the dropped object hazard has potential high risk and needs to be checked. This paper presents a numerical study on accessing the structural dynamics of a subsea riser connection under the dropped container impact loads. De-coupled local and global models were established. The impact impulse was obtained from local impact analysis by Abaqus Explicit solver, in which deformations from container and pipeline are both captured. The impact energy level is in line with the risk assessment. The global model was built by ANSYS APDL macros. A simple input file is only needed for end users. The nonlinear pipe and soil interaction are included in a simplified manner. The model comprises of static and dynamic analysis parts. The static analysis captures the in-place configuration and the functional loads. The dynamic analysis is a restart with inherited stress state from static analysis. The impact impulse was applied by point loads in a certain time range. The nonlinear soil stiffness was approached by spring elements (compression only). The dynamic analysis was done in a longer time, ensuring to capture any dynamic effects. The interface loads at the riser stick-out and riser anchor are both extracted and discussed. It is shown that present structure design can withstand the dropped loads at the input energy level.

Publisher

IOP Publishing

Subject

General Medicine

Reference18 articles.

1. Experimental study on the dynamic response of a submarine pipeline collided by a dropped anchor;Zhang,2019

2. Risk assessment of pipeline protection, DNVGL-RP-F107,2019

3. Numerical and experimental investigation of accidentally falling drilling pipes. OTC-5497;Aanesland,1987

4. Risk-based decision analysis for the protection of marine pipelines from dropped objects;Yasseri,1997

5. Next generation 3D dropped object risk assessment;Fossan,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3