Seismic performance of multi-span continuous reinforced concrete bridges considering flood-induced scour effects

Author:

Vinh Nguyen Hoang,Nam Phan Hoang,Hoa Pham Duy,Hoa Hoang Phuong

Abstract

Abstract Flood-induced scours near the pier foundation are an adverse phenomenon that may cause the collapse of bridges. However, in the seismic design of bridges, the scour impact is commonly ignored when evaluating the seismic response. This study aims to quantify the effect of flood-induced scours on nonlinear static and dynamic behaviors of typical reinforced concrete bridges. For this regard, three-dimensional finite element models of two- and three-span bridges with a multi-cell box girder, circular column bent, and extended pile-shaft foundation are first developed, where the column bent is modeled considering the material and geometry nonlinearity. The interaction between the soil and structure is also accounted for by using soil spring models. By considering different scour depths, the modal, static pushover, and dynamic time-history analyses of the bridges in both directions are investigated. It is observed from the modal analysis that the fundamental periods of the bridges increase with the increase of scour depth. In addition, the results in terms of the column drift ratio show that scour may increase the seismic damage to the bridges, which transfers damage from the column bent to the pile-shaft foundation. The findings of this study exhibit the significant effect of the scour on the seismic damage of reinforced concrete bridges; therefore, it is recommended that this phenomenon should be considered in the bridge seismic design.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3