Finite element analysis of compaction load to investigate the stress-deformation behavior of soil geosynthetic composite mass: A case study

Author:

Phan Truc,Gui Meen-Wah,Pham Thang

Abstract

Abstract When building Soil Geosynthetic Composite (SGC) walls, fill compaction is normally carried out by operating a compactor in a general direction parallel to the wall face. In other words, a moving point or area load is often used to apply a compaction load on a newly installed soil lift. Pham (2009) and Wu and Pham (2010) demonstrated that the compaction-induced stress (CIS) caused by multiple passes of a compactor moving toward or away from a section can be calculated by taking into account the compaction load applied directly above the section under consideration using a simplified stress path proposed by Duncan and Seed (1986). Additionally, by simulating the compaction, the CIS due to fill compaction may be correctly assessed. The CIS resulting from fill compaction can also be accurately assessed by simulating the compaction load, such as by applying a distribution load on top of each backfill layer or a distribution load at the top and bottom of each soil layer, or by applying various widths of strip load to the top of each backfill layer. The objective of this study was to validate the numerical simulation of the compaction load to stress deformation behavior of SGC mass under operating stress conditions. In order to conduct the numerical analysis, data from both a full-scale instrumented SGC mass based on large-scale soil geosynthetic composite (SGC) experiments and a 6 m-high SGC (Pham, 2009) were employed. This study will examine a few SGC behavior parameters, including reinforcement strains, lateral displacements, and reinforcement strains. The objective of the FE modeling is to demonstrate the effect, emphasize the significance of the compaction conditions to the stress-deformation behavior of SGC mass, and validate the findings from the field-scale experiments and proposed model by Pham (2009) and Wu and Pham (2010).

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3