Adaptive sliding mode control of electro-hydraulic servo system based on RBF network

Author:

Zhou S H,Wang H,Li J,Lan L Y

Abstract

Abstract In order to solve the steady-state error in position tracking control for electro-hydraulic servo universal testing machine, caused by uncertain parameters in the system model, an adaptive sliding mode control strategy based on RBF neural network is proposed for this situation. This paper utilizes the adaptive ability of RBF neural network to improve the control quality of the electro-hydraulic position servo system. The strategy has three parts: the equivalent control, the reaching law control and the compensation control based on RBF network. Simulations verify that the control system can track the reference curve well with unknown parameters.

Publisher

IOP Publishing

Subject

General Medicine

Reference10 articles.

1. Indirect Adaptive Fuzzy Sliding-Mode Control for Hydraulic Manipulators;Huang,2019

2. Adaptive control of hydraulic position servo system using output feedback;Ren;Proc. Institution Mechanical Engineers I,2017

3. Adaptive integral robust control of hydraulic systems with asymptotic tracking;Yang;Mechatronics,2016

4. Adaptive gain back-stepping sliding mode control for electrohydraulic servo system with uncertainties;Tran,2017

5. Electric load simulator system control based on adaptive particle swarm optimization wavelet neural network with double sliding modes;Wang;Advances in Mechanical Engineering,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3