Abstract
Abstract
The structure of pollen has evolved depending on its local environment, competition, and ecology. As pollen grains are generally of size 10–100 microns with nanometre-scale substructure, scanning electron microscopy is an important microscopy technique for imaging and analysis. Here, we use style transfer deep learning to allow exploration of latent w-space of scanning electron microscope images of pollen grains and show the potential for using this technique to understand evolutionary pathways and characteristic structural traits of pollen grains.
Funder
Engineering and Physical Sciences Research Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evolution of laughter from play;Communicative & Integrative Biology;2024-04-08