Predicting radiation treatment planning evaluation parameter using artificial intelligence and machine learning

Author:

Ng Frederick,Jiang Runqing,Chow James C LORCID

Abstract

Abstract Purpose: This study suggested a new method predicting the dose-volume parameter for radiation treatment planning evaluation using machine learning, and to evaluate the performance of different learning algorithms in the parameter prediction. Methods: Dose distribution index (DDI) for fifty prostate volumetric modulated arc therapy plans were calculated, and compared to results predicted by machine learning using algorithms, namely, linear regression, tree regression, support vector machine (SVM) and Gaussian process regression (GPR). Root mean square error (RMSE), prediction speed and training time were determined to evaluate the performance of each algorithm. Results: From the results, it is found that the square exponential GPR algorithm had the smallest RMSE, relatively high prediction speed and short training time of 0.0038, 4,100 observation/s and 0.18 s, respectively. All linear regression, SVM and GPR algorithms performed well according to their RMSE in the range of 0.0038–0.0193. However, RMSE of the medium and coarse tree regression algorithms were found larger than 0.03, showing that they are not suitable for predicting DDI in this study. Conclusion: Machine learning can be used to predict dose-volume parameter such as DDI in radiation treatment planning QA. Selection of a suitable machine learning algorithm is important to determine the parameter effectively.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of Artificial Intelligence in the Diagnosis of Neoplastic Diseases: A Systematic and Bibliometric Review;International Journal of Online and Biomedical Engineering (iJOE);2024-03-04

2. Comparison of Deep Learning Methods for Detecting Brain Tumor;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

3. A systematic review and meta-analysis of groundwater level forecasting with machine learning techniques: Current status and future directions;Environmental Modelling & Software;2023-10

4. Machine Learning Based Prediction of Gamma Passing Rate for VMAT Radiotherapy Plans;Journal of Personalized Medicine;2022-12-15

5. Basic Theory and Practice Teaching Method Based on the Cerebellar Model Articulation Controller Learning Algorithm;Wireless Communications and Mobile Computing;2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3