Finite element models for radiation effects in nuclear fusion applications

Author:

Reali LucaORCID,Dudarev Sergei L.ORCID

Abstract

Abstract Deuterium-tritium fusion reactions produce energy in the form of 14.1 MeV neutrons, and hence fusion reactor components will be exposed to high energy neutron irradiation while also being subjected to thermal, mechanical and magnetic loads. Exposure to neutron irradiation has numerous consequences, including swelling and dimensional changes, comparable in magnitude to the peak transient thermal deformations occurring in plasma-facing components. Irradiation also dynamically alters the various thermo-mechanical properties, relating temperature, stress and swelling in a strongly non-linear way. Experimental data on the effect of neutron exposure spanning the design parameter space are very sparse and this highlights the relevance of computer simulations. In this study we explore the equivalence between the body force/surface traction approach and the eigenstrain formalism for treating anisotropic irradiation-induced swelling. We find that both commercial and massively parallelised open source software for finite element method (FEM) simulations are suitable for assessing the effect of neutron exposure on the mechanically loaded reactor components. We demonstrate how two primary effects of irradiation, radiation swelling and the degradation of thermal conductivity, affect the distributions of stress and temperature in the divertor of the ITER tokamak. Significant uncertainties characterising the magnitude of swelling and models for treating it suggest that on the basis of the presently available data, only an order of magnitude estimate can be given to the stress developing in reactor components most exposed to irradiation during service.

Funder

EUROfusion

EPSRC Energy Programme

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3