DIII-D research towards establishing the scientific basis for future fusion reactors

Author:

Petty C.C.ORCID

Abstract

Abstract DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (~30 kPa) and stored energy (3.2 MJ) with H 98y2  ≈  1.6–2.4. In scenario work, the ITER baseline Q  =  10 scenario with zero injected torque is found to have a fusion gain metric independent of current between q 95  =  2.8–3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses  ≈0 injected torque and the operating space is more ITER-relevant. Finally, the high- (⩽3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving ~40% divertor heat flux reduction using either argon or neon with P tot up to 15 MW.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference76 articles.

1. The ITER design

2. Injection of multiple shattered pellets for disruption mitigation in DIII-D;Herfindal,2018

3. Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks

4. Advances in runaway electron control and model validation for ITER;Paz-Soldan,2018

5. Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3