A Gaussian process guide for signal regression in magnetic fusion

Author:

Michoski CraigORCID,Oliver Todd A.ORCID,Hatch David R.ORCID,Diallo AhmedORCID,Kotschenreuther Mike,Eldon DavidORCID,Waller Matthew,Groebner RichardORCID,Nelson Andrew Oakleigh

Abstract

Abstract Extracting reliable information from diagnostic data in tokamaks is critical for understanding, analyzing, and controlling the behavior of fusion plasmas and validating models describing that behavior. Recent interest within the fusion community has focused on the use of principled statistical methods, such as Gaussian process regression (GPR), to attempt to develop sharper, more reliable, and more rigorous tools for examining the complex observed behavior in these systems. While GPR is an enormously powerful tool, there is also the danger of drawing fragile, or inconsistent conclusions from naive GPR fits that are not driven by principled treatments. Here we review the fundamental concepts underlying GPR in a way that may be useful for broad-ranging applications in fusion science. We also revisit how GPR is developed for profile fitting in tokamaks. We examine various extensions and targeted modifications applicable to experimental observations in the edge of the DIII-D tokamak. Finally, we discuss best practices for applying GPR to fusion data.

Funder

Advanced Research Projects Agency - Energy

Fusion Energy Sciences

Publisher

IOP Publishing

Reference60 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3