Boundary condition effects on runaway electron mitigation coil modeling for the SPARC and DIII-D tokamaks

Author:

Izzo V.A.ORCID,Battey A.ORCID,Tinguely R.A.ORCID,Sweeney R.ORCID,Hansen C.ORCID

Abstract

Abstract Extended-MHD modeling of planned Runaway Electron Mitigation Coils (REMC) for SPARC and DIII-D is performed with the NIMROD code. A coil has been designed for each machine, with the two differing in shape and location, but both having n = 1 symmetry (with n the toroidal mode number). Compared to previous modeling efforts, three improvements are made to the simulations boundary conditions. First a resistive wall model is used in place of an ideal wall. Second, the ThinCurr code is used to compute the time-dependent 3D fields used as magnetic boundary conditions for the simulations. Third, the simulation boundary is moved from the first-wall location to the Vacuum Vessel (VV), which extends the boundary past the location of the internal REMC. To remove the 3D coil from the simulation domain, an equivalent set of 3D fields is calculated at the VV boundary that produce approximately the same field distribution at the last closed flux surface assuming vacuum between the two. Each of these three boundary condition improvements leads to an improvement in the predicted performance of the REMC for both machines. The resistive wall alone primarily effects the resonance of the coil with the plasma after the TQ, affecting the q-profile evolution in the SPARC modeling, and allowing the applied spectrum to be modified in response to the plasma in the DIII-D modeling. The movement of the simulation boundary has the most significant effect on the RE confinement overall, including in the early stages, particularly for a DIII-D inner wall limited equilibrium, where the RE loss fraction increases from 90% to > 99%, with SPARC RE losses also occurring much earlier when the boundary is placed at the VV.

Funder

Fusion Energy Sciences

Commonwealth Fusion Systems

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3