The effect of gas injection location on a lithium vapor box divertor in NSTX-U

Author:

Emdee E.D.ORCID,Goldston R.J.ORCID

Abstract

Abstract The lithium vapor box divertor is a proposed divertor design that will minimize contamination of the upstream plasma in a fusion device, while also ensuring protection of the target. In this design lithium is evaporated near the target by high temperature lithium surfaces, dissipating the plasma heat flux. The lithium vapor box has been predicted via the fluid-kinetic code scrape off layer plasma simulator (SOLPS-ITER) to achieve low ( n L i / n e 0.05) upstream concentrations of lithium and low target heat fluxes. Here we compare two choices of deuterium gas puff location using SOLPS-ITER, the private flux region (PFR) and the common flux region (CFR), and find significant differences in the contamination level required to reach an acceptable target heat flux (defined here as q tar max 10 MW m−2). Deuterium gas puffing from the PFR is seen to better reduce upstream lithium contamination. The difference in puffing location is seen to cause changes in the upstream flow of lithium ions. The PFR puff, having better access to the separatrix, can better reduce the upstream-directed flow of lithium near the separatrix which is the primary source of contamination due to a large thermal force in this region. Puffing from the CFR, partially due to inefficacy at reducing separatrix lithium flow, has higher lithium concentration within the plasma. Solutions that reduce the heat flux to below 10 MW m−2 have a range of lithium concentrations between n L i / n e 0.01–0.12 depending on puff intensity, location, evaporator temperature and recycling at the various plasma facing components. The efficacy of the puffs is tested for sensitivity to deuterium recycling coefficient at the target, evaporators, and main chamber walls. A CFR located puff is found to be more dependent on the recycling coefficients used than a PFR located puff. regardless of the set of recycling coefficients chosen, PFR puffing achieves lower lithium contamination than CFR puffing for a given heat flux.

Funder

Princeton Plasma Physics Laboratory

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3